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Placing turbulence research in the context of the contemporary push for “big data”

in many fields, we review recent experiences building large databases for turbulence

research. We consider data from Direct Numerical Simulations (DNS) of various

canonical flows and from experimental studies and related numerical simulations of

wall-bounded turbulence, where the data storage needs are particularly challenging

due to the very large range of length and time scales that exists in these flows at

high Reynolds numbers. The focus is on a move from the traditional approach of

data-handling and analysis where datasets are moved to individual computers, to one

where much of the analysis is moved to the hosting system that stores the data. In

this context we give a summary of a unique open numerical laboratory that archives

over 200 Terabytes of DNS data, including full spatio-temporal structure of various

canonical flows. Particular attention is given to the unique access requirements for

large datasets to become open to the research community and the success the system

has had in democratizing access to large datasets.
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I. INTRODUCTION

The notion of “Big Data” has in recent years become ubiquitous in many fields, rang-

ing from the natural to social and political sciences. Big Data means different things to

different people. In the area of turbulence, its meaning is clear: the ability of both nu-

merical simulations as well as experiments to generate a huge amount of data has been

outpacing our ability to efficiently analyze it. A recognized visionary of the big data revo-

lution, Jim Gray writes in his “Fourth Paradigm of Science”1, that data analysis in general

leads to unforeseen insights and generates hypotheses that guide modeling, new theory, and

further experimentation. Turbulence research, especially when based on large numerical

simulations, has been challenged to fully realize the true power of data-driven discovery.

The largest simulations of the fundamental laws governing fluid flows use tens of millions

of hours of CPU time,2–6 yet most of the analysis must be performed on the memory of

compute nodes while the simulation is running because the simulation state is too large to

be transferred over networks or stored on traditional file systems. Even transferring and

analysis of a few representative snapshots at select time-steps is challenging. It is difficult,

if not impossible, to confront model predictions and observations with the exponentially

increasing amounts of such simulation data. The push has been to run ever larger DNS

of turbulent flows at ever increasing Reynolds numbers. Based on Moore’s law continued

progress in computing technologies means that within 10-20 years DNS of wall-bounded tur-

bulence will reach Reynolds numbers obtained in the largest laboratory facilities. However,

at Reτ = 104 (such as in a large wind tunnel), the DNS would generate 23 Terabytes of data

at each time-step, while for Reτ = 105 (such as in the Princeton superpipe) the DNS file

size grows to nominally 23 Petabytes per time step, and the full simulation would require

an estimated 107 time steps7. While it is not feasible to keep data from all time steps (for

Reτ = 105 that would be 0.2 yottabytes (1024)!), it is clear that although these simulations

may be realizable in the coming decades, the processing and data-handling tools required

to deal with these large datasets will need to keep up. Deciding what and when it is stored

requires a high level appreciation of the physics, and invariably this process is an iterative

and evolving one. Continuing future efforts will likely benefit greatly from collaborations

with computer scientists in devising efficient and tailored data-handling tools.8

Big Data is also generated from physical simulations of turbulence that involve laboratory

and field study experiments, where very high Reynolds numbers are accessible,7 and rapid

developments in camera, laser, and computer processing technologies have enabled major
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advances in planar and volumetric particle image velocimetry (PIV) techniques.9 However,

in this case as in DNS, since the dynamical range of length and time scales of the turbulent

motions increases with Reynolds number, acquiring fully time-resolved and spatially resolved

information requires extremely large datasets.10,11 Modern time-resolved tomographic PIV

experiments of turbulence routinely generate multiple Terabytes of data per minute.

Meaningful progress in the field requires not only that we run sophisticated and massive

direct numerical simulations and large-scale experiments, but that the results of these sim-

ulations persist for further discovery. Once the relevant and large datasets are stored it is

increasingly important to create usable science products from numerical and physical simu-

lations accessible to a broader pool of users. Data arising from the largest simulations must

be released publicly, shared, reanalyzed, and archived over extended periods of time. But

simply hosting the simulation output files for download, as is done by most projects today,

is not good enough once the data volumes exceed a few Terabytes. Once the data volume

is too large, one has to move much of the analysis to the data rather than the traditional

approach, which moved the data to our computers.

In the following section we describe a unique BigData Open Numerical Laboratory, the

Johns Hopkins Turbulence Databases (JHTDB), which presents persistent storage and public

access to a select set of DNS data. The system preserves the significant computation effort

of simulation and enables further experiments leveraging the data to accelerate discovery.

II. AN OPEN NUMERICAL LABORATORY FOR TURBULENCE: JHTDB

A. System description

The system is part of a set of big data prototypes for open numerical laboratories in-

cluding open laboratories in other areas of science such as astronomy12,13, computational

cosmology14,15 and neuroscience16. The Johns Hopkins Turbulence Databases (JHTDB, see

http://turbulence.pha.jhu.edu) is an open numerical laboratory that addresses the in-

creasingly untenable situation of the large HPC-generated data being inaccessible to the

vast majority of researchers in turbulence. Its primary goal is to expose large-scale turbu-

lent data to the research community while at the same time providing easy-to-use client

interfaces for retrieving and interacting with the data.

Fundamental to JHTDB’s approach is the ability of the user community to interact easily

and flexibly with these massive amounts of data. A Database Web Service has thus been

built that handles requests over the web for velocities, pressure, various space-derivatives
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of velocity and pressure, interpolation functions, particle tracking for trajectories, etc. We

index the data using a space-filling fractal curve (Z-index) and apply the “move the pro-

gram to the data” philosophy12, a fundamental tenet in the design of large-scale scientific

databases. A first dataset was placed in the open laboratory in 200817, and consisted of a

DNS of forced isotropic turbulence on 1, 0243 grid points. A total of 1, 024 time steps were

captured, encompassing the time evolution during a single large-eddy turnover time.

In Figure 1, a schematic of the Johns Hopkins Turbulence Database (JHTDB) system is

shown, with remote users indicated at the top of the figure. They are separated from the

databases by the Web server which processes incoming requests and returns the requested

data. The first component of JHTDB is the Web server (front-end) that provides the layer

with which remote clients can interact. The client interfaces remove the need for the end

user to know details of the data storage, such as the distribution of data across database

nodes and how they are indexed. The database cluster (backend), composed of a networked

database system running Microsoft SQL Server, is the second component. The cluster

contains the datasets and provides a scalable infrastructure that supports data-intensive

analyses. This Web service model is modeled after the successful SkyServer approach18 in

which multi-terabyte astronomy data archives have been available to researchers12 for some

time.

The data have been generated by a large-scale simulation performed using a HPC facility.

Within the database cluster, data are partitioned across several nodes. The Web server issues

queries to the database cluster asynchronously using multiple connections per node in order

to leverage the multicore architecture of each node. Data from a simulation are stored in

the database as binary large objects (BLOBs) indexed by the (Morton) Z-curve20,21. The Z-

curve maps the 3D data to the one dimensional index space. It passes through each location

in space once and only once (i.e. space filling). It is easy to compute and provides good

spatial locality which is important in order to support contiguous data access for typical

usage patterns of the databases.

There are four types of flows presently available (over 200 TBytes) in the open turbulence

laboratory: (1) A forced isotropic turbulence case at a Taylor-scale Reynolds number of

Rλ = 433 from a pseudo-spectral simulation on 10244 space-time data points17. (2) A

56 TB database of steady-state magnetohydrdynamic (MHD) turbulence, obtained from a

1, 0243 pseudo-spectral simulation of unit magnetic-Prandtl-number, incompressible MHD,

forced with a Taylor-Green flow. Taylor-scale Reynolds numbers are Reλ,u = 186 and Rλ,b =

144 for the velocity and magnetic fields, respectively. The velocity, pressure, magnetic field,
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Remote	user	(	i=1)		
(browser	access,	cutout	service)	

i	 Remote	user’s	code	(i=..)		
(Fortran,	C,	Matlab,	python)	

FIG. 1. Schematic of the existing architecture of the JHTDB Open Numerical Turbulence Labo-

ratory, showing logical layout of the remote users (clients), Web server, and the database cluster

(sketch adapted from Kanov et al.19).

and Coulomb-gauge vector potential are stored on 10244 space-time grid points, spanning

about one large-scale eddy turnover time. (3) A channel flow dataset at Reτ = 1, 000 on

2, 048 × 1, 536 × 512 spatial data points and 4,000 time steps, simulated in collaboration

with researchers at Univ. Texas at Austin,22–24 yielding over 110 TBytes, and (4) a variable-

density mixing flow on 1, 0243 spatial and 1,015 temporal data points simulated by Los

Alamos (LANL) researchers.25,26

B. Data access

A hallmark of the system is the data access philosophy, predicated on the notion of

virtual sensors. We base our virtual sensor data access philosophy on an experimental anal-

ogy: an experimenter would like to place sensors at specified positions and times (x, y, z, t)

and “measure” velocities, pressure and other derived quantities there. This can be a one-

time measurement, or as function of time at a physical (Eulerian) location or the points

can move with the flow as fluid particle trackers. Derived quantities can be based on a

variety of operators, like the gradient or Laplacian of a field, or applying various filters27
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and thresholds.28 Such data access patterns also enable the users to run time backwards29,

impossible in a direct simulation of a dissipative system. Snapshots are saved frequently

enough so that one can interpolate field values smoothly enough. Sensors can back-track

their original trajectory and one can see where they came from, all the way back to the

initial conditions. Furthermore, virtual sensors placed anywhere in the 4D flow domain

typically require interpolations. For spatial interpolation, Lagrange polynomial17 or spline

interpolation? methods are used. For Lagrange polynomials the client has the option be-

tween no interpolation, 4th order, 6th order, or 8th order interpolation. For splines, the

client can select between 3rd and 5th order methods. In the case of the isotropic, MHD and

variable density mixing databases, interpolation with uniform grid spacing is employed. For

cases with non-equal grids, a generalized barycentric Lagrange interpolation method is used

(e.g. non-uniform grid spacing in the wall normal direction for the channel flow database).

Spatial differentiation is based on various methods such as finite difference or differentia-

tion of the interpolation splines/polynomials. Temporal interpolation is performed using

piecewise cubic Hermite interpolating polynomial.

The existing Web services provide a convenient mechanism for remote clients to interact

with the databases via the immersive approach. The Web services use Simple Object Access

Protocol (SOAP) which provides a standard protocol for sending and receiving messages

over the internet. Client functions are provided by the Web services for spatial and tem-

poral interpolation, differentiation, fluid particle tracking and other secondary calculations

performed within the database. These calculations are in addition to client functions to

request primary fields. Packaged libraries which allow easy use of the Web service functions

are provided for C, Fortran, Matlab and Python. Fig. 2 shows a snippet of matlab code to

read a subset of the channel flow velocity and generate a contour plot.

At this stage, what is noteworthy about the availability of a 4D dataset “at your fin-

gertips” and the ability to make “casual” queries from anywhere at any time, is that it

is beginning to change how we think about the data. Researchers can come back to the

same place in space and time and be sure to encounter the same values. They can follow

and observe phenomena forward and backwards in time. The reader is invited to use any

web-browser and visit http://turbulence.pha.jhu.edu/webquery/query.aspx, select (e.g.) the

“channel” dataset and the “GetPressureGradient” function, and enter a particular time be-

tween 0-25 along with x, y, z positions in the range (0 : 8π)×(−1 : 1)×(0 : 3π). The database

will return the three components of pressure gradient at that position in space-time. Veloc-

ity, pressure, the velocity gradient tensor, and other quantities of interest are available by
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FIG. 2. Snippet of Matlab code for extraction of velocity data (using getVelocity) from JHTDB

channel flow database at Reτ = 1000 and visualization of streamwise velocity in plane near the

wall (at y+ = 10).

similar simple queries. There are tremendous benefits to being able to re-visit repeatedly the

complex flow phenomena at leisure, as physical intuition about the complicated dynamics

begins to develop.

C. Community response and impact

While researchers who themselves perform very large simulations could often (but not

always) analyze their own data more effectively within original HPC environments, the rest

of the community could not do so effectively or not at all. Thus, many researchers started to

access the JHTDB data and carry out their research in the open Numerical Laboratory. A

recent analysis of JHTDB’s usage patterns has been presented in Kanov et al.19, as part of a

special journal issue on open numerical laboratories.30 Figure 2 in Kanov et al.19 shows the

worldwide distribution of requests to the turbulence database, measured by total number of

points queried. There is heavy usage and it has become a global resource. Figure 3 displays

the cumulative number of points queried from the system.31 In 2015, the number of points

has exceeded 12 trillion.

The availability of massive, high-resolution turbulence datasets in web-accessible databases
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FIG. 3. Cumulative number of points queried as a function of time. As of Jan. 2015 the number

of points has exceeded 12 trillion.31

has already proven to have major impact on turbulence research and education. The sys-

tem has been used to address many research questions in turbulence, both from the internal

group that has generated and is curating the DNS data, as well as from external users. From

the internal set of users, a number of publications can be mentioned, such as Refs.29,32–47.

External users have used the databases in studies of extreme events in turbulence,48, shape

evolution49 characterization of particles-turbulence interactions,50 calibration of experimen-

tal measurement tools,51–54 the study of velocity gradient tensor properties,55–57 subgrid-scale

model assessments,58,59 and many others.49,60–72 Typically there are now about 1-2 individ-

ualized tokens requested and assigned to new outside users every week (a token is needed if

a user wishes to download more than 4096 points in a single call).

In terms of education, JHDTB has been used in various classes around the world, as well as

in student workshops (e.g. the “Tutorial School on Fluid Dynamics: Topics in Turbulence”

held at the UMD College Park - see http://www2.cscamm.umd.edu/programs/trb10/, that

has been repeated in 2015 http://burgers.umd.edu/school/). Especially the Matlab

interface has been very popular to facilitate student access to turbulence data.

III. CONCLUSIONS

Turbulence research has arguably been at the forefront of “big data” for a long time, as it

has been generating very large datasets both through numerical simulations and experiments.
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It thus corresponds to turbulence researchers to seek out and establish interdisciplinary

collaborations especially with computer data scientists, and with them to propose and adapt

new tools that enable wider access to turbulence data sets. Here we have presented details

of a unique ‘open laboratory for turbulence’ at the Johns Hopkins University as a example

of the required paradigm shift where one has to move much of the analysis to the data rather

than the traditional approach, which moved the data to our computers. It is hoped that

broader access to data, from simulations and experiments, will further accelerate turbulence

research in coming years.
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